Monotonicity of Löwner operators and its applications to symmetric cone complementarity problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monotonicity of Löwner operators and its applications to symmetric cone complementarity problems

We prove necessary and sufficient conditions for locally Lipschitz Löwner operators to be monotone, strictly monotone and strongly monotone. Utilizing our characterization of the strict monotonicity of Löwner operators, we generalize Mangasarian class of Nonlinear Complementarity Problem (NCP)-functions to the setting of symmetric cone complementarity problem. This affirmatively answers a quest...

متن کامل

Error bounds for symmetric cone complementarity problems

In this paper, we investigate the issue of error bounds for symmetric cone complementarity problems (SCCPs). In particular, we show that the distance between an arbitrary point in Euclidean Jordan algebra and the solution set of the symmetric cone complementarity problem can be bounded above by some merit functions such as FischerBurmeister merit function, the natural residual function and the ...

متن کامل

Vector-Valued Implicit Lagrangian for Symmetric Cone complementarity Problems

The implicit Lagrangian was first proposed by Mangasarian and Solodov as a smooth merit function for the nonnegative orthant complementarity problem. It has attracted much attention in the past ten years because of its utility in reformulating complementarity problems as unconstrained minimization problems. In this paper, exploiting the Jordan-algebraic structure, we extend it to the vector-val...

متن کامل

A continuation method for nonlinear complementarity problems over symmetric cone

In this paper, we introduce a new P -type condition for nonlinear functions defined over Euclidean Jordan algebras, and study a continuation method for nonlinear complementarity problems over symmetric cones. This new P -type condition represents a new class of nonmonotone nonlinear complementarity problems that can be solved numerically.

متن کامل

A Regularized Smoothing Newton Method for Symmetric Cone Complementarity Problems

This paper extends the regularized smoothing Newton method in vector optimization to symmetric cone optimization, which provide a unified framework for dealing with the nonlinear complementarity problem, the second-order cone complementarity problem, and the semidefinite complementarity problem (SCCP). In particular, we study strong semismoothness and Jacobian nonsingularity of the total natura...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Programming

سال: 2010

ISSN: 0025-5610,1436-4646

DOI: 10.1007/s10107-010-0432-0